1
1957. 12. 12.

- Nav

$=5^{\circ}$

 an

in crubirin=

$$
(2 x \cdot n+\cdot n k)
$$

Kiscir

$$
0
$$

$$
\text { Natentrsul. } 20, \text { tis owatres }
$$ あた少

キネシオロジー研究会会員名锺（1）（記入順）

莗 絡 先
1957.12 .12
（合後は1㫘申単の分だけ通信にのせます）

 William：Kinesiology of Trunk，Shoulder and ，d！H
。

p：上入i
Exercise

烟
in Education and．Medicine，1909．To
$9>911$

（D．R．Bowen）6 pan＝Applied Anatomy and

 Anatomy

キネシオロジー研究会会員名镈
（到 着 順）
 1958.1 .5.

Bool ratit

 響淄

木
村
吉
次

 （禾）

式欧多 山f

至入中，

．

 (2) Sceurtir

 - Nionrr
 - NrJercitias D

1

 - هow s.

＊ネシオロジー研究会会員名簿（3）

点品昰踠

板

-
0
0

会果果果 Exan

 \Leftrightarrow

 -

体

 …es in

初答。

人3射报

もネシオロジー研究会会員名特（嫃）

番号	氏 名	㜾 禹	連 絡 先
45	内海 4 江	東京女子大学	
46	阿久津 邦男	東京教育大学	
47	浅見㖟雄	宩京大学	

 包盆

 に読ませていただいています。次々と話題はつきない事と思います。

3月もなかばそ そ そ 3 新学期の準備が初めうれ，新しい节草が䋁究の足がためがなされている頃と思います。ところで今日は梗为と つまらない。すでに皆槏の熟知の事柄ですが，キネテック学へさ速めて行く手だてとして動作分拆を取扱う暗ば，少くとも一度は考
入法算について，自分の実驗ノートから拔書して話趋といたしまし た。

タイナミック年各種の身体運動の颙作分拆の手がかりとなるのは
娚連続茑真と一ロにいいますが。これが㴍好て問題で，分柝の意㘣 にしたがって，多種多様なものが求めら忙るわけであります。ここ
 ではいますが，それ以上に幾つかの幾つかの動作が一敉の冡䇢に漸続して窵されているものや，一動が一敉に断続的に窎されているも の等の意味をいつていろものであります。
上記のストロボが式によるものと，活勤窎真方式によるもののスつ に大别することが出来ると思います。幼論流し蒠寘オ式のものもあ りますが，これも䍙密度意味ではストロボオ式に入るもの上㒻てよ いと思います。紙面の関係も成りますので，今曰はストロボ术式心

 ものでありきす。ストロボスコープッ管犀な実験は扇風機を2台用

 のではなく19世紀末頃に原始的な方法では专りますが，ストロボ穹
日のように高速古運動や複雜な運動梯式にまで適用がれるようにな つ たのは，近々10数年来の事であります。

ストロボ㝍塎の最も原始的なオ法は三暒㝍し寅寘であります。こ れは余誒になりますが，ストロボ窎賏の思いつきは，ストロボスコ一プの原理によるよりも，二荲字しのヒントの方が大きかつたので はないかと思います。

次に裻道として普通の㝍寘機全体をもう一つの暗箱の内に入れて暗箱の採光ロにしシズを向け，採兄に羽根の大きいプロペラ蚛のシ

法でもかなり髙速マトロボ㝍篹さ得る事が出来さ

高等体育運動学
 緒

○，高等理学を修め大学徒下対しては，走•跳•投只の他の䁪勒に郊て，高等理学による理論て備応した講義をしたいものである。そ こどその数耺にある方々の大め，は大体育大学等の数阵の一助に資せん大めめ本扁を草した

- 願はくば䳡と种检討を絡はらんことを。
- 兹に高等の字を冠し大のは，單厂高等理学を使用したからである。御了稀をこう。
 O．跳㗏わ投䘗の最低穻勢から縮めた身体を伸して，身体や砲れを押し上ぐる力の変化は
1．零から透增して，踏み切る前少時間の如 で最大となるもの，
2．最初の全短時間に急に大きい刀になり，
示後等加速度運動的のもの，（これが理想） が想像される。
○，彣で「2」の等から速度連動は，学校敬科書にあるが，「1」の場合は学校教科䛒に見当 らないので，前に㓣案発表する次第でする。
O．㧋て最低姿势から，身体や砲风を押し上 ぐるカで，身体や砃凡の重心に与える加速度 aは，時間七の函数であるが，
（4）．$a=f(t)=K t^{m}$ 。（Kは俰数． $1>m>0$ ） とすれば，身体や砲风の速度ひは， $v=S a d t=\frac{1+1}{m+1} K t^{m+1}=\frac{1}{m^{2}+1} a t \cdots(1)$
これより，$a=(\rightsquigarrow+1)$ 堊，
次に七時間中の重心の経過距離 5 は。

（3）に（2）を代入すれば，

$S=\frac{1}{n+2} v t . \cdots \cdots \cdot-\cdots-\cdots \cdot-\cdots(3)$
$m=\frac{v t}{s}-2 . \cdots$
（3）より，$t^{2}=(m+1)(m+2) \frac{s}{t}$ として，
（1）の二乗に代入す秋ば。
$v^{2}=\frac{m+2}{m+1} a \cdot s$ ．
となる。外嗒する。
（1），次に，$a=-\alpha t^{m}+\beta t$ ．ならば．

$$
\begin{aligned}
& v=-\frac{1}{m^{\prime}+1} d t^{m+1}+\frac{1}{2} \beta 3 t^{2} . \\
& S=-\overline{m+1)(m+2)} d t^{m+2}+\frac{1}{6} \beta t^{3} .
\end{aligned}
$$

この的式より。
$\alpha=\frac{(\pi n+1)(m+2)(3 s-2 t)}{(2 n-1)}$
$\beta=\frac{\left.6\left(m^{\prime}+2\right) s-v-t\right)}{(\pi-1)}$ ．
この两式を原式に入れて，

次にのの最大値で踏切るとすれば，
$\frac{d a}{d t}=-m \alpha t^{m-1}+\beta=0$ ．依 $<, ~ t^{m-1}=\frac{\beta}{m \alpha}$

$$
\begin{equation*}
m=\sqrt{\frac{2 v t}{3 S-\nu t}}-2 . \tag{8}
\end{equation*}
$$

次に（6）と（7）とより

$$
\begin{equation*}
v=\frac{m+2}{2(m+1)} a t \cdot \tag{9}
\end{equation*}
$$

次に（7）と（9）とより。

$$
S=\frac{\left.m^{2}+4 m+6\right)}{5(m+1)(m+2)} a t^{2} \cdots \cdots-\cdots-(10)
$$

次に（9）と（10） n 3 より，

○．如で地球重かによる加速度まは，この地方では，已知数9，留子であるが，跳躍加速度a は末知数であり，人により異る。
O．a の算出には，垂直跳では，俥道跳高ん を測れば，V゙＝2gh，から，踏切跱の跳䠰初速びを求め，映画からSを求むると共に，
sに対する七を測って，例えば，$a=k t^{m}$ ， の場合では，$m=\frac{5 t}{S}-2$ ． $a=(\rightsquigarrow+1)$ 呈により，a を求むればよい。

（二）手直跳に就て

O，身長を……踏切時の初速を…V。最低姿勢から伸展中 の身体の重心の加速度を…a．最低姿勢と踏切時との両重心の華直距睢を……，路切時と最高位との両重心の垂直距離を…h。
$s \div し=K$ ，とすれば。

$\therefore h=\frac{e}{2} k l\left(\frac{E}{W}-1\right)$ ，となる。
Kは下肢長と腰部以下柔軟度の影響がさ䛉！
○，成るべく高く跳び上るには，上式から， 1．成るべく低い姿势から充分身体を神して䠔び上り，（ a が小さくなってはいけない）。
 2．体重び対し，成るごく大きい跳躍力F を出しうること。（Pas＝びが大になること）。 それしには運動神経鋭敏，全身诛に厲関前以下 が柔靯，運動箊强力であることが必要である。 ○「「註〇」のアに就ては，前遂「（－jの2」の場合は…2．「（－）の12の場合は $\frac{m+2}{m+1}$ 。 または，$\overline{2\left(m^{2}+1\right)\left(m^{2}+42+m+6\right) と な る ~}$

E立内跳に就て

O．附図第二によれば，$D=d_{1}+d_{2}+d_{3}+d_{4}$ $V^{2}=P a S, S=K_{2} L . d_{1}=K_{1} L, d_{2}=S$ $\cos \omega \cdot d_{3}=\left[\nu^{2} \sin 2 \omega+\sqrt{\left(v^{4} \sin ^{2} 2 \omega\right.}\right.$ $+4 g \sin ^{2} \sin 2 \omega \cos (\omega) 3 \div 2 g . \quad d_{4}=$ Kろし，であるから，方程式として， $D=L\{K>(2 \cos \omega)+P a \sin 2 \omega+V C$

$\left.\div 2 g+K,+K_{3}\right\}$ ができる。
－上式によれば，跳ぶゆを大にするには，垂直跳で述べたことの外，渋躍角は 45° 以下 とゆうことになる。然らば跳蜼鱼は緵何か。
即ち跳䍝加速度が大きくなれば跳跧苗を大に女よ，（但45゚以下）とゆうことになった。
O．ω と との関係数値は别表の通りである。
（㽖）硕九投げに就て
○．身体の大小と投擲跳離との関係は附図第三の通りであるから，身体の小さい日本人の硕九投げ距離が，14 4^{3} 級であるのに，身体の大きい欧米人のそれが／8ネ䋁でも，悲観する ことはない，もし投蘶距離を身長体重との㽬合を考えて評価するならば，わが曰本人の身体の質は最桭秀とゆうことになるうから。
○，砲え投げ距離方程式（附図第四参照）。
（J）．V．W．h を已知の場合．
$D=\left(v^{2} \sin 2 \omega+\sqrt{r^{4}} \sin ^{2} 2 \omega+8 g h v^{2}\left(\operatorname{son}^{2} \omega\right)\right): 2 g$ ．
$=V^{2} \sin 2 \omega\left(1+\sqrt{1+2 g h} / V^{2} \sin ^{2} \omega\right) \div 2 g$ ． （ID．V．w, α を已知の場合．
$D=2 v^{2} \sin (\omega+\alpha) \cos \omega / g \cos \alpha$ ．
（III）$V . \quad \theta$ を を知の場合．

$$
D=2 v^{2} \sin \theta \cos (\theta-\alpha) / g \cos \alpha \text {. }
$$

○，上記方程式を見ると，投鄭备が 45° では －却って距離がつまることを直感する。然ら は投㺃解はいくらがよいのか。
 $=\cot \alpha=\frac{D}{2}$ ．となるので，自已の投潮距離 を自己の投撕高で除して，三角䦽数表で 2ω を求め，2でわれば，自己のとろべき角度 ω
 となるわけである。（弶5）。
○，私はこの理に基いて，別紙「投撽角早見
 －，砣丸を遠くなげんがためには，1，砲れ の初速度を大にすることくaとSとの相事積 を大にすること）．II，投偤角を前述の要領で知って活用すること，III．投蔯高は高く保っ こと，の三原則を活用することである。
（五）以下他日にゆずる。 （別表）ω と

${ }^{\circ} \mathrm{W}$ ，	a	${ }^{\circ} \mathrm{W}$	a	${ }^{\circ} \mathrm{W}$ ，	a
4330	61.14	4／30	23.40	3930	$13^{32} 22$
430	44.40	410	19.88	390	11.75
4230	34.67	4030	17.161	3830	10.50
420	28.12	400	14.991	380	9.45

逅变加速度曲線図

身体の大小と投獏距離との関係說明図

施丸投げ側視図

O，は最低姿势の砃丸の重心，O2は砲丸
が手から離るゝ腺の重心。
立巾跳側視図

（於 日本体育学会第七回大会） （大阪支部 首藤—关）
髙等体育渾動学（ノ）以＂註註，ふ説明

 $\therefore \therefore \quad \therefore \quad \therefore \times \times \times \times \times \times \times \times \times$

4,

 1
\vdots
9

 ＂Nis＝nor＂

談
話
室易

 6 告紫 わ～
筑なと
でも術

 はのて亭で如力お

$$
i
$$

$$
\prod_{1} \frac{\hbar}{2}
$$

r
きにけ方に実灾
球な急
技い停
1T捶出
艮基停宗
礎止い さら停ボ
浑の学
かず止い

※ネシオオシジー研究会会員名簿

	 (ㄷ.)
 	 उस 14.4.4. 恋 滵

 *

 ע
 no

会 brif alyaiford 5 thy y

$r \leq$

世铝搏

初 の＊

キネシオロジー研究会会㚖名䉳（6）

（所属•連絡先変更）

1

特のしトシが実1すそる活者る射の＂處と理䍃し
神方非ま！に！固・でプラとお動れ力ではうかをを

 を力るを1に暲当と派受がけのと弾るつこうよ
見シベ知て連既範ししの注学死•様同丸㯰たどとう出トきらい動に囲・て主す学力運に時を動・で努な すのでなたエダを「張るはとを動障に押をぞめ力何 こ 偉はかがネラ与そすもデなを害消す先しるす等 と業なつ・ルンえれるのカづ起が失時づてし゚るか がとくたニギベたぞ活でルけさなすのこカのの出な「どさ11のれかあト＂せいるよ種ン来ふさし二はルでの測り冰㧥る限運う類ト る批してもふこあ主定かの者力り動ににの
買主解必力でったに孚笖張は「続・か類題食莪积ずンあ恚•対当はすつ前す発らしての

 1
た。
学
校
暲
岱
ザ
ボ
で

 が地

Fと

キネシオロジー研究会会員名薄（7）

＂

ノ子い゙，关決

$$
\therefore x_{1}=W_{n}-\omega_{1}, N
$$

- - ©
(.0

 NWH
(1テ

s

－Jow SN：

则空可：！
各
地
∞
動
き
き
\because

\cdots

 	 －タロッ二活たゝの （HF 哵 所 莽） （ 4 德 三E） 。辑

i

変更

| 番号： | 民 | 名 | 竘折属 | 新建絡先 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | 松 | 井秀治 | 名古屋大学 | | | |

連絡极
1.

$$
\begin{aligned}
& \text { 分洋 }
\end{aligned}
$$

(7)

走ヒ跳における記録の男女此の差異について。

中跳では， 78.1%（奴界）また，走高跳では， 81.9%（女／萛）で互 る。（弟1表）

これシの界女比の苍異について若干の考察を試みよう。

考えるならば到達し得歹最大水平趾雜しは

$$
\begin{equation*}
L=\frac{2 \nabla^{2} \cos ^{2} \alpha}{g}=\frac{\nabla^{2} \sin 2 \alpha}{g} \tag{1}
\end{equation*}
$$

で，到達し得る最大高度Hは，

$$
\begin{equation*}
H=\frac{\sigma^{2} \sin ^{2} d}{2 g} \tag{2}
\end{equation*}
$$

であられされ友。但しては踏切の速度：よは踏切か角度；事は重たの加嫏度である。（気1図）
係するもので声ることを知る。

係がある。光：で短距離亮走の記録の界女比 89.4% を自承してみ るとT9．9\％となり䠊躍竞抜の記録の男女比とほぼー致する。 ＊記金录は読责年睢 1958によ3。

$$
\begin{aligned}
& l_{0}=1+l_{1}+l_{2}=\cdots \cdots \cdot \\
& L_{0}=\frac{2 I^{2} \cot ^{2} d}{g}+I_{1}+l_{2} \cdots \cdots \cdot(4)
\end{aligned}
$$

亲学票。

产 3.

 いと思う。

1958．9．23．門 辉 子

キネシオロジー研究会会員名簿（9）

踏み切り 方が Iー11図走りゆとびの合力

キネシオロジ一研究会会員名簿（10）

番号	氏	名	所属	連 絡 先	
70	横	田	弘 道	渥美町立 和地学校	

3
は
の
綿
集
な
ど
な
分
検
討
を
加
而

