

日本バイオメカニクス学会報告

第8回 国際バイオメカニックス学会大会を終えて

名古屋大学総合保健体育科学センター・第8回国際 バイオメカニックス学会大会組織委員会事務局長

小 林 寛 道

第8回国際バイオメカニックス学会大会は 1981年7月20日から，24日まで，愛知県産業留易館を主会場として開催された。ま た京都サテライトシンボジム，東京サテラ ィトミーティングにも多数の参加者があり，盛会のらちに藻をとした。

名古屋大会については，日本を含む23ヶ国から419名の参加があった。発表演題に ついては，特別招待諵演 3 題（各 60 分間）， セッション別招待䛈演13題（各30分間），一般口頭発表98題（各15分間），一般ボス ター発表 83 題（各 5 分間の口頭発表時間を もつ），一般TV発表4題であった。

また，バイオメカニックス関連科学機器の展示会もボスター発表会場に隣接して開催さ れ， 35 社が参加出品し，最近の研究システ ム，研究機器デモンストレーションカ行われた。
学会連営に関する報告の一部は，体育の科学 31 巻 10 月号，712～715頁（1981年） にすてに記述したのて，ことでは思いつつま まに運営の変話などを書き連ねてみたい。

（1）苦労したブログラム作り

当初，発表申し込みは 98% 以上か口頭発表であり，ボスター希望者はわずかであった。

全部口頭発表にしてしまえば楽であったか，日本人の語学力の問題や，多数の演題を能率的にとなす運営上の問題，さられ展示会との かねあいを考え，ボスター発表を約 40% と する方針を決めた。とれまで当学会では口頭発表を重視し，ボスター発表は口頭発表から はずされたものか行ならといった傾向もみら れたか，本学会ては，口頭発表上りはむしろ ボスター発表を重視するといった考え方で臨 んだ。せっかく皆か口頭発表を希望したのだ からといら配蕆もあり，5分間づつの発表を するブログラムを作成した。発表の内容は， スボーツばからでなく，リハビリテーション，整形外科 人間工学 と我々かあまり深い知陚をもっていなに分野も含まれているのて， その分類や，ブロクラムの作成には，随分暴 をなやませた。内話をあかせは，ボスターセ ッションの掲示板の設営には随分費用かかか ったし，ポスターの発表演題名を事務局で用意したか，1演題につき約4000円もかかっ た。従って，1演題にかかったコストは，ロ頭発表とはくらべものにならなかった。お险様でボスターセッションの評判は悪くなかっ たのでホッとしたものである。

ボスター発表会場
（2）英文綴りのまちがえなおし
外国人は英語が上手だろらという先入観を我々はついもちゃすいか，決して決して答え はノーである。英語国の人はまだしも，母国語か英語でない国の人々にとって，英吾は我々日本人にとってと同じょらそ苦手であるよ らだ。しゃべるのは，いかにも英語でベラべ ラときとえるか，徢いたあのはそらはいかな い。今回，アブストラクトは全文てちらで打 ちなおして印剧した。あらかじめアブストラ クトの用紙を規定しておけば良かったかもし れないが，との学会にはそのような規定はな い。2月1日アブストラクトのよ切日であっ たか，4月に入ってもさみだれ式にアブスト ラクトか送られて来て，しかも共産国のもの はあまり上等でない紙に，にしんだタイブの おのか多かった。外国人には親切にといらの が我国の伝統であるのか，遠い東洋の東の果 てに位㯰する日本にはるばるやってくるのだ から……とい5感情か，との学会を運営す る1つの心情ではあった。

アブストラクトのらえで，明らかな誤りは随分となおして印刷した。日本人て心あたり からる方が何人もあると思われる。特に著者名について，ミスタイブして平気でおくって

こられる方もあり，こちらでなおして印刷し た。忙かしい先生方のとととはいえ，それは すべて秘書の唄りですでは，私どもの労力か いくらあってもたりない訳である。日本語で の学会とはちかっって，すべて英語といらとと だったので，我々にとって慣れない面名あり，大変緊張を必要とする毎日であった。
（3）TVセッションでの難局实破今回新らしくTVセッションを設けたが，欧米で用いるUマチックといら型のビテオ装䁛か，日本では使われていないととに気づい たのは，学会わ間近にせまった頃てある。中部地区には，2台しかない欧米用ビデォテー ブの再生変㯰のらち，1台が名古屋大学の語学センターにあるととを知ったのは，学会の直前である。幸いこれを借出すことに成功し て，無事TVセッションを終了したが，実は，日本はエレクトロニクスの発達した国だなど と大見得を切った手前，実に冾汗ものであっ た。との難局を乗りこえるととがてきたのは，我センターの池上康男君，の働きによるとこ ろか大であった。
（4）エクスカーション係の活蹓

このような学会は，エクスカーションが会員相互の親睦を深めるとんらことで，大変重視されている。遊びの世界に造形か深いとん う実績をかわれて，村瀬豊君がその世話役と なった。樢飼といえば，一人の参加が1万円 である。とにかく，バス代，舟代，弁当代も すべて当方すちとんらととて，エクスカーシ ョンの费用は会員から特に雉収していない。 しかし，なんとか樢飼を楽しんでわらおらと いうことて，寄附金あつめの方を一手に引き受けて松井先生は大活躍をされた。相当に苦

しいととも多くあった様にらかかっている。鵜飼に出す弁当についても，一応試食会を行 ない，名大の火曜勉強会のメンバーからいろ いろとコメントをつけてもらん，よりフィッ トした弁当の中身とした。なんといるても，最後まて鵜銅参加者の人数が確実につかめな かったととは予算計画の上でる苦しんだとと の1つである。エクスカーションの費用とし て別途徵収しておけば，大きな誤算はふせぐ ことがてきるが，1人の参加で1万円が動く といらととは，実に不安定なものである。

Dr．ボイセーと Dr．松井，レセプションにて

（5）事務局長としての感想

事務局といっても，実は，組織委員会の仕事がすべて含めて，弯わめて少人数で行った。仕事が英語であり，しかも国際学会の運営な と，手がけたととがない。日本の学会なら当然仕事の分担ができるととです，当初はとち らが雲をつかむよらなかたちで仕事を進める ので分担するにも，なかなかしにくんとんう面があった。い离むい仕事が集中して，しか も，思ってもみなかったととが次々とおとら， また世界的規模であらゆる要求がでてくるの をとなすのは，並大低のととではなかった。 とにかく，参加人数の多さでは，日本で開く スボーツ・体育関係では，1964年東京オリ

ンビックのとをのスボーッ科学者会議以来と いうことであるのだから，大変なものである。私も，仕事はそうをらいな方ではないが，と のバイオメカニックスの運営については，自分の実力の 110% ぐらいを出す日が数ヶ月も つづいたのて，学会が終ったあとは，さすが精根をつかい切ったの感があった。閉会式の時，最後に演墥に登り，一般的コメントのあ と，参加者への感謝の辞を述べようとした途端に，のどがつまり，目がしらが痛くなり，声を出そらとするとヒクヒクと呼吸筋がけい九んをするという事態にみまわれてしまった。 このととが自分としては心残りである。本学会大会に参加された方々が，学会の成

功を祝って下さるととは大変にありがたいと とだし，とのととが，我々日本の体育の研究者たちが，真の国際社会で同等に活跳できる

柔 道 と 衝 撃

柔道，剣道，空手，拳法，相援，維刀，合気道などの武道では，武器あるいは素手で相手を投げ，打ち，吒き，突き，蹴り，払い， ひねって相手を制する技術が発達している。
実際の場面で相手をとの位の強さで投げ，打ち，实いているのかを知るととは非常に興味深いところであるか，武道にまいてはいた ずらに大きな力，強い徤撃を与えれはよよとと いうことてなく，いかにわすかな力で，そし て弱い衝撃でも容易に相手の動作の自由をら ばん，戦意を軗失させることができれば最善 の策となる。試みに諸橋敬次「大熯和辞典」 によれば，䚡撃とは＂進んて敵を突破る＂と ととあり，単に物理学の＂物体に急散に加え られるカ＂といら定義以上に武道的意味を含 んでいることがわかろら。
㭼道の投技では，投げられる側（受）は相当な高所から落下するわけであるから，身体

清川は，街撃荷重の測定のために，四隅に ロードセルを取りつけた $3 m^{2}$ の矩形のフロア一を製作し，フロフーのどの部分に荷重かか かっても加算されて一定値になるよらにして出カをシンクロスコーブにて写真をとり観察 している。その結果，その場跳上り横受身を しなかった時の衙撃力は 635 kg て，受身をし を時には腹 425 kg ，体幹 495 kg となり，体幹 に受ける衛繋力が減少している。
徳田たちは，床の状態の差異による衝繋力 の変化をみている。すなわち 50 Kg の物体を

ための踏石となるととができれば幸いである と思う。

筑波大学 浅 見 高 明

m^{2} 当り約20gになるよらにして， 50 cm の上方より種々の状況の床面に落下させ，各々 の衡繋を湖定している。それによるとスブリ ンクの入った柔道場ではその値が 1,570 g，板張りと畳だけの場合では1，922g，アスタ イルと畳では 2,395 ととなり，適度の床面と しての最大衙繋力を 1,500 g程度にするとと か必要であるといっている。
児島たちらは，ストレインダーシを貼布した衡聫力測定台を用い，その上に2枚の畳をす れないように固定し，そこへ設げるようにし垂直方向の衡撃力をビシクラフにて記録した。 また衡紫力と身体接床部位との関係を調べる ために手荦部，时頭部，局部，照部にテープ スイッチをとりつけ，衙繋力と同時に記録し た。投技は一本背負投，払腰，大外刈，大内刈，支釣込足の 5 種類で，各技について2～ 3 回の試技を行ない。その街繋力を記録し，力の敨高値，力栍，一秒当りの力積の平均値 を算出した。一本背負の街繋波形の一例を示 すと，図1のようになり，カ積はブラニメー ターによりカ曲線と基準線に囲まれた面積を計測し胳部，背部，臂部及び全体の値を求め た。一秒当りの力皘を算出した理由は力積か カ×時間であるのて，長い時間にわたって小 さな力が加わった場合と短時間に大きな力か加わった場合とか数値的に同じに出てくると とがある。そとてカ皘を作用した時間で割っ て単位時間当りの力を算出したわけである。

IPPONSEOINAGE
SUB．K．K
（FREE）
図1——本背負投の衔然波（受身をした場合）

各投技における受身の衝繋力を力皘でみた のが表1である。大内刈については接床順序

表1 各技の力積（ $\mathrm{kg} \cdot \mathrm{sec}$ ）

	榢 部	背 部	脟 部	合 計
$\begin{array}{\|l\|} \hline \text { 一本背宕投 } \\ \text { 受身罟b) } \end{array}$	2.93	9.63	1325	$\begin{gathered} \mathrm{kg} \cdot \mathrm{sea} \\ 25.81 \end{gathered}$
一本背負投	－	4.10	1471	1881
（⿳⿱㇒⿲丶丶㇒冖又土				18.81
大 外 刈	320	12.78	8.87	2485
扎 腰	2.40	9.13	12.92	24.45
支釣込足	3.12	3.00	1522	21.34
大 内 刈		－	－	22.52

か異なるために部位別に力積を算出するとと かてきなかった。全般的に力積の大きいのは倠部て，次に背部，腕部の順となるか，大外刈は恃部よりも背部の力皘が大きかった。

しかしなからか積を接床時間で割った値て みると表2のよりであり大外刈の背部が必ら ずしも大きな値とはならない。つまりカ積が大きいといっても接床時間が長いので，睬間的に巨大な力か作用したわけではない。むし

ろ払腰や支釣込足の照部に 200 kg を越える力 が作用しているのをみると，もしも恃部に筋

表2 各技の一秒当りの力積（kg）

	腕 部	背 部	辟 部	平 均
	78.00	133.18	23	
背負投	－	21128	171.44	172.71
大 外 忧	63.12	92.79	162.58	91.65
払 婹	6959	121.97	22987	134.79
支釣込足	43.48	112.64	207.73	124.56
大 内 刏			－	18205

肉や脂肪が多量に附着していなかったならば，生体にとって大変な街繋になったはずである。

また力曲線の最高値を計算したのか表3て あり，大外刈は必らずしも大きな値とならず支釣込足の最高値が最も大きい。しかしての

 と結びつくものではなく，むしろ背部の衙繋力が重要であら5。（もちろん頭部を打った

表3 力曲線の最高値（ kg ）

投 技				高値
一本背負投（受身あり）				$596.46{ }^{\text {kg }}$
一本背負投（受身左し）				61426
大	外	刈		446.42
払		腰		569.44
	釣 込	足		60205
大	内	刈		524.77

場合には別てある）つまり背部の一秒当りの力積の大きな一本背負投や払腰の方が大外刈 や支鉈込足よりも生体に及ほなショッックが大 きいと推察される。
一本背負投について受身をとらなかった例 は，図2のように大きな力曲線が一気にあら われ，短時間に大きな衙撃力が作用したとと がわかる。そして受身をとらない時に㚈腕を用いないので局，即部同時に接床する。受身

IPPONSEOINAGE
 SUB K．K．
 （no－Ukemi）

図2 一本背負投の衔繋波（受身をしない場合）

をしない場合の 1 秒当りの力積は表2のよ5 に背部の値が211．28kgとなって受身をした場合（133．18kg）よりも 2 倍に近々値を示 した。とれは胳を使わない為に背部に直接に大きな衝敩を受ける結果となり，生体に対す るショックが大きいと推察される。事実「受」 の内省報告によっても受身をとらない時には息かつあり全身にショックを受けてとても痛 いといらととである。すなわち，生体の㑡か ら衡繋をみると，ショックの大小恃背部の一秒当りの力栍で判定するのか妥当のよらに考 えられる。

柔道において危険なのは頭部を強打した場

合であり，人間に対して頭部を打てといら指示は出しにくいのてどらしてもがミーを使用 するととになる。松井たちは，自動車研究所 から衙突実験用がミー（伊藤精機KK製，体重 74.5 kg ）を借用してきて頭部と胸部に三軸加速計を封入し，加速度波形をデーターレコー ダーに収録した。そして6種類の投技につい てがミーを投げとばして頭部に受けた畀撃を みると，大内刈 436G，大外刈119G，一本背負投 85 F G，体落 83 G ，内股 76 G とな り，松野が示した自動車事故の伤害基準に上 ると，10～50Gは中等儌域， $50 \mathrm{G以上}$ は重儌域となり，WSTC（Wagne State
head injury Tolerance Curve）にかんても， 80 G 以上は dangerous としているので，な とんどの投技が非常に危険であるととがわか ろう。このよらに柔道では投げられた時に瞬間的には 600 kg 以上もの衔繋が身体に加わる のであるから受身の訓練が特に必要なことか わかる。受身には前受身，後受身，横受身，前まわり受身などがあるが，とれらの受身動作を観察すると，
（1）維動量の変化が長い時間かかるようにする。
（2）＂が長い距離で行われる。
（3）＂を広い面積で受けとめる。
（4）＂を廻転運動でくんとめる。
といった術撃力を弱める動作条件を備えて いるととがよくわかる。

引用文献
1）滴川紫洋：柔道の受身に関する研究（第一報），体育学研究，12（5），85，1967
2）徳田臱平，竹田究治：柔道投技における衞㜎に関する研究（第一報），一特に施設面からの考察一，武道学研究，8（1）。 5－10，1975
3）児島義明，浅見高明他：禿道投技の受身 の分析ー身体各部の衡學力と接床時間につ いてー，武道学研究，10（3），50－56， 1978
4）松井劤，川村幀三，浅見高明，竹内善徳 ：柔道投技の衙繋と受身に関する研究柔道 56年7月号，53－58，1981
5）松野正徳：衝突に対する人間の生有限界。日本機械学会誌，82巻726号，42－49，1979

第 36 回 体力医学会，聞いたまま感じたまま

東京薬科大学バイオダイナミックス研究室

室 増 男

歴史と深いかかわりをもった琵琶湖畔で昭和56年9月22～24日，体力医学会か開 かれた。この体力医学会に参加して，感した まま 2 ，3述べてみたい。

初めに最近，我々の分野て Anaerobic Threshold簡略化してATとい5言葉がはや りだし，我々の領域に関連した学会で必ず数題の発表がある。ATは，Wasserman \＆ Whipp（1975）Kょって定義された概念て あり，Gas Exchange のバラメータから得ら れるものである。とのATなる概念は生体の内部応答（筋代謝のアシドーシスの開始時点 ほか）変化を探るために有効な手段であると考える。すなわちATは nearmaximumより低 い負荷であらわれるために，米国などては心臓疾患患者の運動療法（ physiotherophy）K応用されている。しかし，我国におんては， Tを用いての運動療法は実践されていない。今度の学会で初めて，竹内ら（鶴見大）によ ってATの応用が報告された。とれは，興味 ある報告であった。また鈴木ら（自治医大）

は肋間筋の疲労と単一NMUとATの関係か らとらえ，それらの現象が同時期に現わられ るとと手報告している。とれは，EMGから もATが推定できることを示唆するものであ る。永田ら（1981）もEMGスペクトル，I EMG，血中乳酸，Gas Exchange の各バラ メータから，それらとATの関係につんて総合的に検討している。その結果上述の各バラ メータからすATが推定でをるととを報告 している。以上のよらにATの概念は興味あ るぁので応用性の高い性格をもっている。し かし，ATの決定は赎重におとならととか大切である。そのためにもその概念を正確に理解するととは必須である。今度の，ATの発表の中で，Aer T（Aerobic Threshold）と An T（Anaerobic Threshold）の言葉を用に ている場合がある。この2つの言葉とATは対立概念ではなく，互にに排他的でもなく，共存し合らといらこともある。そのために， An T，Aer T を用いた研究とATの研究 とに混乱が生じる可能性は大きくなる。その

意味で，An TやAer T を用いるべきでな いという意見があった（体育学会でも）。私 もその意見には賛成であり，権威のある雑誌 で発表された产葉（AT）を速かに用いるべ きであろら。それは共通理解をもつための常識と考えたい。混乱したATの研究によって， ATの応用性の発展の芽がつみとられかねな いから，そのよらな自体を起さないようにす るためにあ一本化すべきであろら。

2つ目に，勝田らによる anaerobic power と aerobic powerから筋線維組成を推定する興味ある報告があった。最近パフォーマンス と筋線維組成の関係を示した論文が多い。と れは観血的に筋線維組成を推定し，優秀な
Athletes の発掘に役立つ可能性をもってん るものと考えられる。私もとのようなととが表面EMGの情報からも推定できるものと信 じている。そしてEMGスベクトルから検討 している。この方法を活用しての報告は，体青学会，体力医学会で1，2題みられる。 っととの手法を用いた資料が沢山出されるこ とによって，筋線維組成の推定を相補的に可能にする。また，堀居ら（日体大）は筋バワ ーの時間的澸少を各相に分け，Tesh らの筋線維タイブ分類を参考にして報告していた。 これらも間接的な㑅線維組成の推定に役立つ盗料となりらるもので，一屇の研究データの出現を期待する のである。

3つ目は，運動制御に関係したととである。會田らは勤作の違いによって発火闘値の異な るMUがmotoneuron poolに存在する可能性 を報告した。とれは興味ある報告てあり，一定張力発揮を目標としても動作の違いによっ てMUの活動様式の異なるととを示唆してい る子のである。
さらに西平賀，荒木らは脳の運動電位変化と勒作の関係について詳細に解析した。それは運動制御の解析に有用であり，スキル，協応䣦作など研究に活用すべき方法の一つと考え

られる。また鬼頭ら（愛知教大）はテニスタ ランドストローク中の四肢協応動作を視覚情報の遮断装置によって検討した。これはダイ ナミックな運動に応用てきるものて，視覚情報とスキルの研究などに活用できるものであ る。

4つ目は効率に関した問題である。ヒトの効率を求めるととは非常に難しいものである。金子ら（大阪体大）は長距離ランナーの機械的効率を詳細に検討し興味ある報告をしてい る。船渡ら（東大）も正仕事相の筋放電量か ら仕事率を検討している。いずれにせよ一動作に働く筋の効率が総合されて運動の効率を求めている。一動作の効率を総合的に研究す るととはこれからのバイオメカニクスの課題 の一つであろら。私は筋の弾性と放電頻度の関係からその仕事を手かけた段階である。

以上むとまりのない話をしたが，感じたま まに述べたのて，もし勘違いなどあればお許 し願いたい。最後に今後体育学の中でバイォ メカニクスの研究要求は一層增大し幅広いも のになっていくだろら。そとで我々若い研究者は，高い意識をもつ必要がでてくる。私は常々，何事にも＂研究 ${ }^{4}$ と名のつくものには ＂遠歓＂がなければならないと考える。それは種々雑多の知識の単なる乗積ては得られない し，弱い意志ては初手から脱落してしまら。私 の先生は，真剣に学会，研究会に参加し，そとで折々に得られる知識を徹底した目的理念にも とづんて修得するよう心掛けるようにと。そ して単なる猿真似ではなく，模倣しなから自分なりに分析し，総合して，そこにフィロソ フィーの根を生育させるととが研究（㓣造） につながるものとんっている。これからのバ イオメカニクスの発展に，一尿高い意識への感受性を喚起しするため，我々若い研究者の活動意欲をさらに期待し，努力しょらではな んか。そのためにも近い研究領域の仲間が互 いに積極的に情報交換しようではないか。

新 入 会 員 名 簿
（昭和56年4月～57年2月1日現在）

第6回 バイオメカニクス国内セミナー事務局からのお知らせ

1．会 場
山ロ市民会館小ホール
山口市中央2丁目5番1号
電話 0839－23－1000

2．会 期
昭和57年5月14日（金）•15日（土）

3．主題及びシンボジゥムテーマ
（1）主題 バフォンマンスの向上と神経•

筋機能

（2）シンボジゥムテーマ
a 運動単位の動員様式

 ドバック）
c 身体運動の効率

4．特別䛨演
「前䫟葉と随意運動のコントロール」
京都大学霊長類研究所
神経生理学
久保田 競 教授

う．発表方法
一演題発表時間 15 分
討論時間3分（総括討論 有）

6．大会参加费
一般 2，500円 学生 1，000円

7．大会参加申込方法
大会参加希望者は，第6回バイオメカニ クス国内セミナー票務局宛に，「大会案内」を請求のらえ，申し込み下さい。な お，大会参加申込か切は昭和57年2月 15日，となっております。

8．セミナー高務局は下記のとおりです。第 6 回バイオメカニクス国内セミナー事務局
＊753 山口市吉田1677の1
山口大学教羔部 体育学研究室内
電話 0839（22）6111
内線 529 （皆川）
587 （森田）
599 （杉浦）
9．宿泊申し込み方法
宿泊申し込み希望者は，「大会案内」に，同封されている宿泊申込用緍に必要事項 を記入のらえ，セミナー事務局宛に昭和 57年2月15日までにお送り下さん。 なか宿泊料金は，セミナー事務局では受 け付けておりません。

会 報 ひろば 第111号
1982年2月発行
代表者 宮 畑 虎 彦
発行者 石 井 喜 八
連絡先 〒158東京都世田谷区深沢7－1－1
日本体育大学キネシオロジー研究室内
バイオメカニクス学会
電話（704）7001 内線320
郵便振替口坐 東京8－89287

${ }^{112}$

日本バイオメカニクス学会報告

応用科学および多目的科学としての
バイオメカニックス

名古屋大学 松 井 秀 治

科学は対象とする事象の法則性を追求する ととにその目的があるとし，その成果の副次的利用ゃ応用を研究の考虑の対象としなん人 があるが，私はかならずしもその洘えにした かわない。むしろ科学は事象の法則性を生活 の実際に具体化するととによって，科学とし ての真の意味を達し得るものと考えている。近代文明が生んだ新しい人間の科学であるハ イオメカニックスは，直接間接に，人間のよ りよい活動的生活抎充にどのように具体的に かかわっているのだろらか。
（1）労働の省力化やその合理化について キリシアの哲学者ブラトンは「最も美し い運動とは最小の力を用いて，最大の奻果 をあげる運動てある」といっているよらに，古代キリシアの時代においてすでく人々は人間の動作につんて，その出力と能率の関係に注目していた。すべての面で能率の要求される近代生活においてはとのととは更 に強く要望され，刻々の人間をとりまく一切の事象に対して，すべての作業か最も能率よく行なえるよら作業環境の整備がすす められている。更に，量産と製品規格の画一化の要望は，人間に代わる労働力として，

生産機械ロボットの導入を促進しつつある。 かかる分野の科学として，人間工学（Human Engineering）およびロボット工学がある。

人間工学は人間と機械の接点の科学とし て発展したものであり，それは，人間の作業を最も能率よく行なえるよ5，人間か操作する装退の各要素や機㭜類などの設計，人間の感覚に訴える布めの色々の標示方式 といった事柄か，安全に不快感なく効率上 く行なえるよら，装四や作業関係全体の設計むよび施設の研究とその具体化をねらい とした科学である。

ロポットエ学はいらまでもなく，人力に代わる労働力としての人工人間機械の開発 を意図した科学であり，電子工学の発展と とにコンビューターの小型化とその応用の多様化は，ロボット工学を飛踏的に進展さ せた。
具体化の方向に连にはあるか，人間工学 もロホット工学もその目指すところはとも に人力の効果的利用とそれに代わる人間的労傎力の機械的構成である。とれらの具体化が望ましい形で進められるためには，人間の動作の基本的特性である感覚能力，運動性，特に新しい技術を学びとる能力，協

同または団体行動を行なら能力の把据とと かに，とれ等の能力と機械や環境との関係 の解明は欠くことのできない条件である。
バイオメカニックスは，人間の身体の動 きと動きにかかわる事象の理論的解明をね らんとした科学である。いらならば，人間工学やロボット工学の基麾となる，人間の動きに関する事象のセオリーの多くはバイ オメカニックスの研究成果として提供され るととになる。
（2）身障者の医療やりハビリテイションについて 20世紀の前半，ドイッのオット・フィ ッシャ（Otto Fischer ）やレクリンク。 ハウゼン（Rekling Hausen）などによっ て姿勢や人間の歩行に関する極めて優れた多くの研究か公にされた。それ等の研究の ねらいは，バイオメカニックスそのはに あったのではなく，洔とんどは，運動の基本的状態を解明するととによって，普仏戦争，引続いての第一次大戦と，戦争によっ て傷害を受けた多くのドイッの若人達の義手，義足を考案し同時にそれ等の人々に対 し，積極的な医療技術やりハビリテイショ ンを試みるととを目的としたるのであった。
また，今日我々か手にするアメリカのバ イオメカニックス関係の書物の内に，整形外科医の手によるものや，あるいはそれ等 の人々の協力を得て書かれたものか多に。 それは小児麻㾝，文明事故といわれる交通事故や機械事故等の世界で最も多いアメリ カにおける，その後遣症の積極的療法や稪正，更にはそれ等の研究を通しての予防を も，バイオメカニックス研究の主要なねら いとしている努力のあらわれといえよう。

身障者や事故不自由者数は，日本でも敫增している。ての方面の研究対策を一部の整形外科医や整骨師にゅだね，その対策の幄れていた日本は問題がより深刻である。日本のバイオメカニックス研究が，とて数年急速を発達を見つつあるのは，人間工学的対応やスボーツ科学的対応以上に，かか

る対応を迫られてのものであるととを強調 したい。
また，手術機械，患者用ペッド，更に進 んでは人工内敛等，広義な医用工学の基礎 としてバイオメカニックス研究の成果は，医学研究に多面的に応用されている。
（3）記録の限界を追らスボーッ活諈とそのト レーニングについて
近代のエリートスボーッは記録の限界を追ら人間の科学である。との科学の半ばを占めるのはバイオメカニックスであるとい っても過商ではない。より高い記録を生む覬技力は，体力に負らとこらが多いか，同時に合理的な身体の動をといら競技技術や戦術に﨎づけられたすのである。
走り高跳びの記録はハサミ跳び，正面跳 び，ベリーロール跳び，背面跘びと，跳び方の開発ととbに記録を伸な゙してきた。八 ンマー投げも三回転投げから四回転投げ技術への発展でカだけの競技から高い技術性 を持った競技に変わら，記録を飛跳的に伸長した。砲丸投げにあ，また三段跳びそか，記録への影慜に大小はあるか，陸上競技の あならず，こらした技術的開発や工夫は全 てのスボーツ種目におよんている。
注目したいととはとれらの発想や手かか りとなる盗料は，スボーツ活動の運動学的分析やその動力学的法則性の研究，いいか えるとバイオメカニックス研究によって提供されているといらととである。

バイオメカニックス研究のスボーツへの応用は技術面だけではない。スボーッ器具 や施設とも深くかかわっている。筋活動と筋力の向上にかかわる研究は筋力トレー＝ ンクの方法の工夫とともにその効果を高に わのとするため，種々のトレーニンク器機 を開発した。最近ようやく多用されるより になったアイソキネティックトレーニンク器機等は特筆してよいものの一つであるら。記録を一挙に 1 m も高くした魔法の槹とい われる権高蹊びのグラスファイバーボール，

ルールの改正までの話遉となったヤり投げ用のヘッド型ヤり，更にスボーッ関係者な ら誰もか気づらている，スポーッ種目毎， または親技種目毎のシュース，安全のため の工夫を加えたスキ一用具，またゴムの走路といわれるタータントラック，人工芝の クラントト等タ，材料工学との関連を加えて これ等は全てか何等かの形でバイオメカニ ックス研究の成果と表悬の関係にある。
（4）学校体育の学習指導について身体運䣦を主要友教青の手段とする体有学習におにて，身体や身体连洏についての バイオメカニカルを理解は欠くととのでき ない要件であるとともに，その体有学習の場は，ハイオメカニックス的思考の発達を推進する教有の場でもある。
運䡃の学習を通しての身体や身体羊動の正しい理解，ととに運動する際のからだの構造と，外部の力学的動きかけのかか合せ の法則性を運動の実際を通して学ぶとをは， そのまま健康や健康を保つ上に効果的な身体の鱾かせ方を習得するであるらし，それ はまた，身体的技旅開発への道を開くとと となる。更にとらした蓄積はまた次の高に体充学習への発展ともなるといえる。
米国体育界の近代の父といわれる故マ， クロイ教授は，体有学習とバイオメカニカ ルな身体運輅についての研究との結びつき を強調し，次のでとく述べている。

「体有におかて効果のある学習指送をる るととは，運䡃の技能についてらまく教え るととに基樜をおんている。学習指導のら まさは人間の樽造と運䡃機能の適切な知譏 と理解にかかっている。この理解はやがて バイオメカニカルな基兟的知罭にさかの垤 ってくる」と。
マックロイの譶莱によちずとも体有学習 そまける還劸技能の上達というととは，児童や生従の側办らすれば，当面する体育学習の全てであるとんっても過言ではない。近年，ともすれば教育学的な学習形態にと

らわれさきて，体有学習の主体である連䡃 の技能学習を単なる経験学習として終らす傾向がないとはいえない。技能の上達は学習者の実施の状態に合せた技術的指浔をー ースとしたドリルによって初めて果たされ るものである。したかっって，体有学習指逍 の担当に当っては，個々の程䡃教村の技行的理解とともに，その技赫を構成する身体 の動きの基術的理解は，児童•生徒の技術向上とともに学習の安全管理の上から6欠 くととの出来ない条件である。
（5）バイオメカニックス研究の現状から
1981年7月筆者が組織委員長て第8回国際バイオメカニックス学会大会を名古屋市て開宿した。全世界23ヶ国から419余名（内日本人271名）のバイオメカニ ストかか参加し，発表された演題は特別読演等を含めて201題であった。それ等は7
 5日間に㵂って討議された。198題の分野別討議の要点は次のでとくであった。な お括抔内の数字は発表㜊数である。
1）バイオメカニックスの基術（General Biomechanics ）（14）
とこての発表はバイオメカニックス研究 の最も俈硟的左課題である身体羊動の基本形（Fundamental Movement）K関してで あって，走，勝投，蹅，打，その他の動 きについてか話題となった。
2）人間工学とバイオメカニックス（Human Engineering Biomechanics）（ 20 ）
とこでの発表は人間の動きをいかに機械的に合理化するか，また，日常の工作器械 や用具，更には生活道具を人間の動きに効率的に適合させるかといった，人間の動き の省力化 および動きのロポット化への過程としての研究が主内容てあり，その発表 と討論け労働一般に関する事象，作業姿熬，動きのモテリンク（Modelling）とシュミ ィレインョン（Simmulation）に類別して すすめられた。

3）医学とバイオメカニックス（Medical Biomechanics）（39）
医学の課題である治療は人間の正常なる活動状態への復㷌がその最終目的である。 とのととから先に述べたよらに医療の全域 に渡って最近では身体運動や身体の郋きと医療との関係か論議となる。今学会大会で も主として，整形外科関係てはあるか，手術器機等の医用工学的演題も含めて多くの研究発表か行われた。発表と討論は，との分野では，関節の動き，動き㑥害，その他， のに類別してすすめられた。
4）リハビリテーションとバイオメカニ ックス（Rehabilitation Biomechanics）（12）
四肢障害についてのみでなく，成人病患者の予後予防を含めてリハビリテーション の要望は高い。バイオメカニックスス研究て 6整形外科領域とは離れた独自な研究か発展しつつある。とのセッションはかかる発表をまとめて一つの分野とした。環境の積極的利用を含めた币広いリハビリテーショ ン方法についての研究等とともに，動きの ための補助器開発とその利用の基本となる関連研究の発表と討論があった。

5）スボーツバイオメカニックス（Sports Biomechanics）（51）
本学の起源がスボーッについてのバイォ メカニックス研究が主体であったととから，今日も最も多くの発表題数を数えた。発表 と討論は，走運動，体操とタンブリンク，水泳とダイビンク，キックとバッティンク その他のスポーッとスボーッ種目の特性に よって大別され，それぞれについて力学的動作分析とそとでのエネルギー効率を中心 に行われた。力学的動作分析については従来の定性的分析に加えて，定量的分析の発表か目立った。またエネルギー効率研究に ついて，最近の筋の組織化学的研究の重要 さが提言された。との提霅はバイオメカニ ックス研究の奥梁さを示すとともに，応用科学，実用科学としてのバィオメカニック スの役割を明暸に示しているといってよい。

6）神経，筋活動とその調整（Neuro－ muscular Control）（41）
人間の動きは筋活動として集約されるか， それは常に意識下にあるものと，そうでな いものとの両面によってコントロールされ ている。とらした動きの回路的研究は，従来神経生理学の対象とされてきた。しかし，義手，義足を始め原子力の開発等から危険物を取扱らハント゚ロボットの開発，更には工業用ロボットを越えて，より精密な人間 の手，足の動きの代替の要望は，神経生理 の篩囲よりも一歩進め左筋神経の協応研究 の発展をバイオメカニックスの課題とした。 また医療面でも機能の保存，崸が㷌かの最大課題である。との分野はかかる諸要望や諸課題に対する研究をまとめた。勿論，人間を対象にしてのかかる面の研究は極めて困難である。しかし，発表題数にもあられ るよらにスボーッの分野に次いで多数を数 えた。発表と討論は筋電図分析（EMG），筋活動（Muscular Function），動きの整一化（Neutral Activation）に類別して すすめられた。

7）バイオメカニックスス研究法（Metho－ dollogy of Biomechanics）（21）
科学の進歩は研究法の進歩といわれてい る。バイオメカニックスもその枿外ではな い。バイオメカニックスか，近々10数年 の間に目さましい進歩をみたのあ，研究法 の開発に負らところか多い。また，研究法 の開発がバイオメカニックスとしての応用性の広さと，その他の科学との接点を広げ たといえる。したかって，ことでの発表と討議は測定器機や身体運動の分析の方法等 の直接研究法にかかわる課題ととぁに，常 にバイオメカニックス研究の新しい方向うか けについてがその内容となる。今回も演題 の半ばはとの関連のものであった。
（6）バイオメカニックスといら科学
科学は対象となる事象の法則性の究明に あるか，同時にその明らかにされた法則の

生物界，ととに人間生活への活用を課題と している。科学史の物語るところでは，む しろ後者の課題が前者の研究を刺敞発展さ せたといってよい。しかし，多くの科学は事象の法則性の究明の蓄積として組織され ている。
その点バイオメカニックスは先に述べた
ように，生物の動き（以下特に断って書く場合以外では人の動きと書くとととする） を，動きの事象として究明するととわに， その成果の人間生活へのフィート゚バックと

しての開発や㓱造もその科学の対象として いるととである。むしろ，そとからの要望 かとの科学を生んたといえる。繰返しにな るか，バイオメカニックスは人間の活動的生を方やその正常性を，生産からレクリェ ーション，医療まで人間の動きの研究から支援していとらといら科学である。この立場からそれは当然学際的多目的科学といえ よう。しかし，個々の研究とその研究の接点では，明らかに新しい面の茎礎科学であ り，応用科学とみてよいであるら。

アメリカ社会の心臓病への対応

昨年の6月1日付のアメリカの週刊認タ1 ムは表紙に心縅の模型図を載せ，心臓発作に ついての記事を大きく扱っている。それによ るとアメリカでの心臓病による死亡率け一唈年（推定）で10万人あたり450人である。年どとにわずかに减少する傾向にあるものの心萲病による死亡率は症の 2 倍半である。心葴病はアメリカでも中高年齢者にもっとも恐 れられている病気であり，それだけに社会的 な関心の的である。我国においては一昨年の
特に管理職にある人々に衙絷を与えて「大平 ショック」と称されて心臓病への大きな警筑 となっている。
私は昨年の5月下旬にマイアミで開催され たAmerican College of Sports Medici－ ne（ACSM）の年次総会に参加したかそと で大きく扱われていたのは心膕病患者のリハ ビリである。
最大のトビックであったといえる。心膕病患者のリハビリにはどのような運動かっいか， といら根本問題については多くの報告かなさ れたが，基本となるのはいずれも心域血管系 を積枢的に用いる全身逜動であった。報告者 のなかでも注目をあびていたのはミルゥょ キースあるMount Sinai Medical Centerの Cardiac Rehabilitation部門での責任者であ る Pollock 博士であった。彼は現在ACSM の理事長で46才の働き盛りである。私は個

人的に面諢があるので学会終了後に彼のセン ターな訪問した。同センターでの指導は3段階に分けて組み立てられていた。第1段階は手術後の入院患者に対するわのである。リハ ビリを始めるにあたっては手術が終り次第，早いほど良いと考えられ心筋硬塞の患者では手術後2日目ないし4日目に，冠状動脈バ バス患者には翌日からリハビリを開始する。運動はストレッチ体操を主とした柔軟体操を行なん，関節をよくほぐすととから始まる。次にはゆったりとした歩行，あるいは自転車 こきか心電図と血圧が監視されなから行なわ れる。とらした運動は1回に行なら時間は短 かく強度は弱いのであるか，1日に何回も行 なわせている。また運動以外には退院後の健康管理についての指導かなされる。このよう な第1段階は約1ヶ月で終了する。第2段階 は通院による治療である。1回の運動時間は 90 分間である。始めの 10 分間はストレッ チ体操を中心とした準備逆動である。そのあ と 45 分間の歩行あるいは自転車てきをさせ最後に整理体操で終る。勿論，この間は心電図と血圧か看護婮により監視されており緊急時の医師との連絡体制かととのえられている。第2段階は3ヶ月ないし4ヶ月て終了するが， その頃には手術による組織の損倣はほほほと完全 に回復しているという。第3段階ては患者は地域にある管理組織との連繋をとりつつ運哑強度をあげていく。このよらにして，平均て

1年ないし1年半でふつらの体力水準にまで回復するといら。手術後1年ないし3年てボ ストンマランンを完走した例あ報告されてい る程である。

ところて，とのよらにリハビリの研究がん くら進歩しても心膕病にかからないにとした ことはない。とれまでて，たばし，高血圧，肥満，種々のストレスが心臓に悪いととが明 らかんされている。一方，ショギンクやサイ クリングといった心臓や肺を十分に用いる全身運動が心荹病の予防によいととま明らかに されている。こらした事実に対するフメリカ社会の対応はなかなか興味深に。私はロサン ゼルスの西にあるサンタバーバラで1ヶ年間生活したのであるが近くのスーハーーやレスト

ランには種々の低脂肪，低カロリー食品か用意されている。例えばダイエットの牛乳，炭酸飲料水，ビールがあり，レストランには砂糖の代用品が砂糖とならべてテープルの上に おいてある。とらしたてとはサンタバーバラ以外の所でもみられたてとである。またショ キングやサイクリングについては日本てはプ一ムと称され社会的にはファッション的な扱 われ方の傾向が強いか，少なくともサンタバ一バラては完全に人々の生活に定盖している上らである。朝に夕に老若男女のジョギンク姿やテニス姿がみられたのであるが，もっと もそれには自然環境のよさや，スボーッ設備 が整っているととが幸いしているととも確か なととである。

次回バイオメカニモス学会の総合議題について

運営委員長 石 井 喜 八

次回総会は第6回セミナー（於山口大学） で開催されますが，いくつかの重要議題が提出されるよらに進められていますので，あら かじめ，お知らせします。
（1）「身体運動の科学」続刊について シリーズ発刊予定は第4回（於筑波大学， 1978 ）および第 5 回（於大阪， 1980 ） と発刊が停止している理由につきましては，既に＂ひろば＂110号でお知らせしたとお りです。その後の運営委員会の処理経過を報告致します。そして会員の皆様ので判断 をお願いするととになります。
（2）学術雑誌発刊への道

選挙管理委員会からの報告

永田 最•福永哲夫

次期进営委員（昭和57年5月～昭和59年5月）の選挙か行われ，開票の結果，下記 の方々が選出されました。総会におなかっりし，迥営委員をお願いするととになります。
1 石井喜入 7 浅見俊雄 13 浅見高明
2 宮下充正 8 永田 展 14 小林一敏
3 金子公宥 9 涭川㑆 15 星川 保
4 福永哲夫 10 小林宽通 16 山下譄智
5 能本水頼 11 岡本 勉 次点 河合洋祐
6 松井秀治 12 皆川孝志（順位：得票順）

本学会の機関紙として「スボーッサイエ ンス」を月刊紙として発刊する。とれには原著掲载のための十数頁をとる。その他の内容として総説，解説，紹介などを入れる。出版にはソニー一企業と提供してこの事業を進めたい。
（3）会费値上げ案
議案（2）に関連して，会費の値上げが関連議題として提案されることになります。ま た，上記機関紙発刊にかゝわりなく，現行会费（500円）ではまかないきれなくな っております。

以上

会報ひろは第112号
1982年5月発行
代表者 官 㚼 虎 彦
発行者 石 井 喜 几
速絡先 〒158 東京都世田谷区深沢7－1－1日本体育大学キネシォロシー研究室内

パイオメカニクス学会
電話（704）7001 内線320
郵便振替口座 東京 8－89287

． 113最 終 号

日本バイオメカニクス学会報告

第1回運動生理・バイオメカニクス
中•四国セミナー大会を終えて

中•四国セミナー大会発起人
広島大学総合科学部 菊 地 邦 雄

中•四国地区の運動生理・バイオメカニク スの発展のために，第1回大会を昭和57年 3月26日に広島大学教育学部福山分校て開催した。1日だけのセミナーであったか，参加者も多く盛会のらちそ終るととができた。

午前中の10時から正午まで，学生のため の教有ブログラム：「筋電図の理論と実際— スポーツ動作分析ー」と題して，広島大学教育学部渡部和善助教授か中心となって筋電図 の手なときを行った。筋電図の誘導法，コン ビューターと接続してのバワースベクトルに よる周波数分析など理論と実験から説明し，参加した学生は真剣に耳をかたすけていた。昼食後の1時から，特別講義：「体温調節 と運杵」と題して，山口大学医学部第二生理学教室の村上悬教授の講演を行った。内容は，中枢しベルでの体温調節のメカニズム，運動時の体温調節，長期間のトレーニンクか体温調節機構におよ体す影響など興味深いもので，覬技力向上のための環境温と体温の関係を知 る上て大いに役立つぁ話しであった。
その後，話題提供に入り，次の 5 名の演者 から発表があり，活発な討議か行なわれた。 テーマと発表の趣旨は以下のとおりである。

1．「息とらえについて」 徳島大学教崣部小原 繁
息しらえについては昭和30年前後に集中して研究報告されており，最近はあまり報告されていない。それは結局，息とらえ テストが体カテストとして何を調べている のかわからないといら点が明らかになって きたためではないかと思われる。とのよう な正体不明な状態にある息とらえの問題で はあるか，これまでの報告で調へられてい ない項目の 1 つとして心拍出量がある。本研究では心拍出量を中心そ報告した。

2．「等速性筋収縮からみた竻力」 広島大学総合科学部 菊 地 邦 雄
．従来，筋収縮の方法は，等張性筋収縮と等尺性筋収縮に大別されてきたか，最近，等速性筋収縮が注目され，筋収縮のスビー ドのちがいによる箷力が測定されるように なった。

との筋収縮の特徽は収縮の初期から終期 まで一定のスビードで筋力か発揮できる点 である。
との方法にもとづいて筋収縮時の筋電図，

男女差，筋カトレーニンクの効果などにつ いて検討した結果を報告した。

3．「アイススケート連䵢時の運動強度」岡山大学教美部 鉿 木 久 雄

アイススケート運動を心肺機能改善を目的とした運動処方とする場合，技術的要因 が多く含まれるため，技術しベルどとに検討を加える必要がある。そとで，被検者を初心者からスケート選手まで4クルーブと し，心理的強度を強•中•弱の 3 段階に分 け，10分間のスケート滑走中のエネルギ一消費量を測定し検討した。

4．「ストレッチ体操のトレーニング効果」広島大学教育学部 原田美箖，渡部和彦近年ストレッチ体操が盛んであり，多く の人に注目されている。そとで，ストレッ于体操がどのような原理に基づくものであ るかを筋電図学的に追究した。また，スト レッチ体操が身体の柔軟性におよぼす影響 の程度を客観的に評価するために，4週間 のトレーニンクを課し測定した（被検者40名）。 4 過間のトレーニンクで，わずかな から柔軟性に向上を認めた。筋電図の結果 から，ストレッチ体操の従来の体操との相異点が示された。更に，ストレッチ体操の温浴をともなった柔軟性についての効果に ついても検討した。

5．「呼吸相と剣道打突時間」一光剌激に対士る反応動作一 広島大学教育学部大月康嗣渡部和彦

スボーツ動作にあいて適切な動作の発現 のためには，それぞれの運動種目に適した呼吸法があると思われる。そとで，呼吸相 の違いか剣道打突における反応のすばやさ にどの程度影響するかを検討するととにし た。すなわち，光刺散からの全身反応時間 と正面打実時間を測定し検討した。さらに，呼吸相別の全身反応時間，および正面打突時間の関連について分析した。その結果，吸気相での打笑時間に幄れを認めた。

以上が，セミナーの概要てあるか，その後総会を開き，简単な規約と次回の開催地なと について討議した。引き続いて想競会に入り学問の話しや大学ての研究状況などについて夜の更けるまて語り合い散会した。
運動生理，バイオメカニクスでは不毛の地 とまで言われてきた中•四国地区にも，この セミナーを契機としてようゃく発展のきさし か見えはしめた。また，山口大学で開催され る第6回国内バイオメカニクス学会をステッ ブとして各研究者の意識も一段と高まるとと だろら。その成果を期待して報告にかえさせ て頂く次第である。

日本バイオメカニクス学会

昭和57年度（春）総会報告

本学会総会は第6回バイオメカニクスセミ ナーの第1日目の5月14日に開催された。報告事項は次のとおりである。
1．会員数 昭和57年4月20日現在，356名
2．事業報告
（1）ひろひば発行，109号（56年4月），110号（56年7月），111号（57年2月）
（2）国際バイオメカニクス学会（56年7月•名古屋）開催
（3）日本体育学会専門分科会シンボシューム （56年10月）開催；テーマ，Cinemato－ graphy の今日的問題
（4）文部省学術刊行物助成の申請；対象は身体運動の科学 IV（第4回バイオメカ

ニクスセミナー，於筑波大学1978）
3．昭和 56 年度会計報告（会計年度昭和 56 年 4 月 1 日～ 57 年 3 月 31 日）

収入の部	（単位：円）	支 出の部	（単位：円）
前年度繰越金	440,681	ひろば印刷䝴	236.790
会 費	107,000	通 倍 费	211,120
身体運動の科学	158.193	バイオメカニクス	100,000
1，2，3印税		セミナー補助金	
体育学会補助金	30,000	サテライト	39，040
預 金 利 息	4,335	ミーティング補助金	
		事務局員手当	30,000
		そ の 他	7，510
		57 年度へ繰越	115,749
合 計	740,209	合 計	740209

議題および審議過程（抄）は次のようで ある。
（1）「身体連䡃の科学」続刊について これまで開催されたバイオメカニクス －セミナーのらち，第4回（於筑波大学 1978）および，第 5 回（於大阪，1980）の発刊が停止されいる。その理由について は＂ひろば110号＂でお知らせしたと おりである。その後，浅見高明運営委員 （筑波大学）の尽力により，事務局から昭和57年度学術刊行物助成费を申請し たか，本セミナー直前内示により不探用 か決定した。運営委員会では槙重審議の結果，第 5 回セミナーの記緑ともども今年度中に発刑するとととし，具体的な発行手順についてはセミナー開催を願った责任者に原案を一任した旨を総会に提案 し，出席者全員に承認された。
（2）機関紙の発刊について
これまで＂会報ひろば＂をもって会員相互の情報交換むよび運営委員会からの連絡に供してきた。また，数回にわたっ て䅡上げてきたせミナーの成果もいくつ かはまとめられ発行されてきた。しかし最近の成果は前述の瑶議のように滞って いる。会則第17条には刊行物として公表するととになっている。そとで，以下 のような提案理由による説明があり，審

議に入った。
Sports Sciences 発刊趣旨説明
本邦におけるBiomechanics 研究はその質と量とそおいて，国際的評価を得るま でに至った。しかし，それらの成果を発表する場が意外にも少にといら現状を認 めざるを得ないのである。そとて，われ われは下記の理念に則り，本学会の機関紙として，「Japanese Jounal of Spo－ rts Scienses」を新らたに発刊するとと を提案するものである。

本紙か刊行される際には，まず，Bi－ omechanics が学際分野の応用科学であ るといら認識に立つ。したかって，その内容はいわゆる理論と実践の間隙を埋る わのとし，さらに，それぞれ異なる立場 て身体運䡃に関係する者同士が比較的容易に理解できる形式をとる必要がある。 この点，各分野の研究内容が高度に細分化•専門化して，相互の理解か困難とな っている現状を打開したい。一方， Bi^{-} ome chanics に関する知見と情報か，まさ K，日進月歩であるところから，国の内外を間わず，それらがてきる限り速かに， しかも正しく伝達されるととか望ましい。 そとで，上述のととから本紙は以下の上らな特色を持つ。
1）月刊紙とする。

2）各号に適当なトビックを選定して特集を組む。
3）細分化•専門化か進んた領域につい ては総税，解説，紹介の論文を掲载す る。
4）海外情報を積極的に提供する。
5）本紙がこの領域での権威ある専門学術雑誌を志向して，編集委員会で案査 の上，原著論文を掲載する。
6）投稿者は本学会会員に限らず，海外 の研究者にも門戸を開ぐものとする。

以上がとの総会において提案された配布資料としての趣意㶳である。
確かに，この領域からの提案にふさわ しい内容がとの趣意書の中に述べられて ている。しかし，第1議題にあみられる よらに，とれまでのセミナー報告の発行 さえるか滯りかちであるのか現状である。 その理由は唯一，経済事情にもとすく運営にある。この問題解決のために，この たびの機関紙発行はンニー企業株式会社 との提势によって推進しよらというので ある。
運営委員会においては，まず，会费の値上げを行い，それによって発行できる雑誌を育ててはという意見，また，企業
 る雑誌になるのではと愳念した意見が出 されている。これに対しては提携の相手 を仲間と信じ，われわれは学術といら立場を保持して編集していとらといらとと になった。

そもそも，この雑誌の発刊構想の中に はとれまでのセミナー報告も吸収してい きたいといら意向があった。しかし，運営委員会では現在までお預りしてきた原著論文は新しい雑誌に掲戒するとなると， やゝ時期を失したもの す含まれている可能性もあり，その対策として，それそれ の著者との碓認とその論文の寁換えなど の書簡の往復はいたずらにお互の事務を

煩雑にするたけとなり，ときには取下 げを髟める結果ともなりかねない。それ よりおせミナー報告は幄ればせなから従来通りの報告集としてまとめれば，当時 の記録としての意義を見出すととがてき る。そとで，第1提案と区分して，第2提案は新らたな機関紙への取組とし，今回のセミナーからの論文掲載といらとと を踏まえて総会提案となったのである。総会における蹯議の過程では会員から ＂名称について＂の意見と＂月刊紙への掲载論文数が間に合らだろらがといら䍐念の意見であった。名称については「 Sports Sciences」としては範囲か広す きるといら意見であり，また，Sports といら言葉にとだわりを持つといらもの である。とのような意見の交換ののち本案件は承認された。
（3）会费の値上げ（案）について これまでの年間会费は500円である。「びろば」の発行，運営委員会の連絡通信费も不足がちである。例年通りの事業計画も実行できないととは「ひひるは112号」 で既にお知らせしてあるとおりである。今回の J．J．Sports Scie，発刊の承認 により，昭和 57 年度から会费 5,000 円案か上提された。この根拠は本会会員に限りての5，000円の5ちの4，000円を負担して機関紙を1ヶ年間配布を受ける権利を保証され，残高 1,000 円をもって本会の運営責にあてるというものである。

この案件も出席者全員によって承認さ れた。
（4）会則改正
本会は「バイオメカニクス学会」とし て1978年筑波大学セミナーの開催され た総会の席上決定をみたか，今回「日本 バイォメカニクス学会」と称し，欧文名 をJapanese Society of Biomechanics と呼ぶととにした（第1条）。

第3条の（4）機関紙「ひろば」は「J．J． Sports Sciences」と改める。

第5条（1）会費年額500円は5，000円 と訂正された。
また，第 24 条を加え，本会則改正は昭和57年5月より施行する，といらとと になった。

以上

新運営委員会報告

1．次期運営委員長に石井喜八委員か再選さ れた。
2．次回セミナー（昭和59年）は名古屋ブ ロックで開催する予定で進めるとととし，次々回からは毎年行ら方針をきめた。
3．J．J．Sports Sciences の編集委員の選出は運営委員長むよび宮下充正委員に一任 された。
4．次回，国際バイオメカニクス学会はカナ ダ・ウォータールーで開催されるととか， I S B の宮下充正理事から報告された。
5．大阪セミナーの報告書㚈金子公䈐•过野

昭両運営委員によって促進するととになった。
6．次回の運営委員会は日本体育学会の折に開かれる。

事務局からのお願い

山口大学の皆さんの熱心な運営て，第6回 セミナーも䯶大のらちに無事終了致しました。会員一同心から感謝致しております。
再び，事務局を日本体育大学でょ引受けす るはめになりました。さて，総会で決定され ました会費値上げにもとずきまして本年度か ら納入していたらくくとになりました。同封 の振込用紙をで利用下さって納入手続を完了 されます様ま願い申し上げます。
事務局では9月末日までの納入者をもって ンニー企業株式会社と連絡をと $り, ~$ 機関紙を引続き発送するととを考えてあります。

よろしくで協力の程か願い申し上げます。

身体運動の科学 N と V の発行について

運営委員会

最近，第5回バイオメカニクス国内セミナ一の世話人（过野 昭•金子公有両運営委員） の方々から「身体遄動の科学V」の発行につ いてのお軹いか，会員各位に送られていると思います。てれにつんて，運営委員会の立場 からも御恊力をお願い致しますか，それと同時に若干，ど説明を申し上げたいと思います。
まず，第4回バイオメカニクス国内セミナ －（於筑波大学）のブロシーディンクスは世話人洗川仁二•浅見高明両運営委員ので尽力 で，今年度のセミナー後，再び，杏林書院と接歩されまして，「身体運動の科学 V 」の前 に発行されることになりました。とれは一重 に両委員および第 5 回の両委員，それに杏林書院ので理解の賜と媣く感謝をしておるとこ るです。

それにしましても，第V巻の発行には撇し い条件が付带しているととを考えますと，各員各位におかれましては，大阪セミナーのプ ロシーディンクスと同様に，購入計画をたて られ，図書管，隣接領域の研究空そしてセミ生などにお铑めをお願に申し上げます。

なお，加えて辻野•金子両委員からのむ願 いである「身体運動の科学V」につきまして も，で協力をお願い致します。

Sports Sciences への投稿につんて編集委員会
身体運動に関する研究業績を投稿するとき は以下の要領（抄）をど承知まを下さい。
1．原稿用紙はB5版400字詰横妻原稿用紙を用い，20枚以内（含図表）とする。

2．原著には100～150唔程度の英文抄録をつける。
3．送付先： $\boldsymbol{\nabla} 104$ 東京都中央区銀坐4 －2－15
塚本素山ビル 3 階，ソニー企業K．K．
Sports Sciences 編集部 （03）567－5679（直通）
封筒の表に「Sports Sciences 原稿」と朱書のとと。
4．執筆要項
1）「平かな，国㝻体 新かなつかん，で ある調」で横書•楷書とし，句梳点かよ

び括㐽は1字とする。
2）外国語は原語で活字体で書き，邦語文 で書く場合は片かなで珤く。
3）原稿には表紙を付し，表題，著者名，所属機関名を和•英文で明記する。
4）数字は算用数字を用い，度俥衡か単位 は原則としてMK S 単位を用いる。
5）文献は A B C 順とする。文献雑誌名の省略は原則として，和文は日本医学雑誌略名表，欧文は Index Medicus による。 なお，投稿規定は原稿送付先に請求で きます。

再び，事務局をお引受けして

運営委員長 石 井 喜 入

とによって学術団体としての地位と権威のそ！ なわる条件わ備えていかなければならないと考えている。
絶大なるど後援をお龭いするものです。

会報ひるば 第113号 （最終号） 1982年7月発行
代表者 宮 畑 虐 彦
発行者 石 井 宮 几
連絡先 〒158 東京都世田谷区深沢7－1－1日本体育大学キネシオロシー研究室内

バイオメカニクス学会
電話（704）7001 大線320郵便振替口坐 東京8－89287

